Search Engine

Friday, November 27, 2009

Electromagnetic spectrum

The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object.The electromagnetic spectrum extends from below frequencies used for modern radio to gamma radiation at the short-wavelength end, covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. The long wavelength limit is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length, although in principle the spectrum is infinite and continuous.
Type:-

While the classification scheme is generally accurate, in reality there is often some overlap between neighboring types of electromagnetic energy. For example, radio waves at 60 Hz may be received and studied by astronomers, or may be ducted along wires as electric power.
The distinction between X and gamma rays is based on sources: gamma rays are the photons generated from nuclear decay or other nuclear and /particle process, whereas X-rays are generated by electronic transitions involving highly energetic inner atomic electrons.
Also, the region of the spectrum of the particular electromagnetic radiation is reference-frame dependent (on account of the Doppler shift for light) so EM radiation which one observer would say is in one region of the spectrum could appear to an observer moving at a substantial fraction of the speed of light with respect to the first to be in another part of the spectrum. For example, consider the cosmic microwave background. It was produced, when matter and radiation decoupled, by the de-excitation of hydrogen atoms to the ground state. These photons were from Lyman series transitions, putting them in the ultraviolet (UV) part of the electromagnetic spectrum. Now this radiation has undergone enough cosmological red shift to put it into the microwave region of the spectrum for observers moving slowly (compared to the speed of light) with respect to the cosmos. However, for particles moving near the speed of light, this radiation will be blue-shifted in their rest frame. The highest energy cosmic ray protons are moving such that, in their rest frame, this radiation is to high energy gamma rays which interact with the proton to produce bound pairs . This is the source of the limit.

1 comment: