A protective earth (PE) connection ensures that all exposed conductive surfaces are at the same electrical potential as the surface of the Earth, to avoid the risk of electrical shock if a person touches a device in which an insulation fault has occurred. It ensures that in the case of an insulation fault (a "short circuit"), a very high current flows, which will trigger an overcurrent protection device (fuse, circuit breaker) that disconnects the power supply.
A functional earth connection serves a purpose other than providing protection against electrical shock. In contrast to a protective earth connection, a functional earth connection may carry a current during the normal operation of a device. Functional earth connections may be required by devices such as surge suppression and electromagnetic interference filters, some types of antennas and various measurement instruments. Generally the protective earth is also used as a functional earth, though this requires care in some situations.
In household wiring:-
There are two main approaches to the problem of how to disconnect power when a live wire comes into contact with metalwork attached to the earthing system: One way is to get the resistance through the fault path and back to the supply very low by having a metallic connection from the earth back to the supply transformer (a TN system). Then when a fault happens a very high current will flow rapidly blowing a fuse (or tripping a circuit breaker).
The second approach (), where such a direct connection is not used (a TT system), the resistance of the fault path back to the supply is too high for the branch circuit overcurrent protection to operate (blow a fuse or trip a circuit breaker). In such case a residual current detector is installed to detect the current leaking to ground and interrupt the circuit.
Cost:-
TN networks save the cost of a low-impedance earth connection at the site of each consumer. Such a connection (a buried metal structure) is required to provide protective earth in IT and TT systems. TN-C networks save the cost of an additional conductor needed for separate N and PE connections. However, to mitigate the risk of broken neutrals, special cable types and lots of connections to earth are needed. TT networks require proper RCD protection.
Safety:-
In TN, an insulation fault is very likely to lead to a high short-circuit current that will trigger an overcurrent circuit-breaker or fuse and disconnect the L conductors. With TT systems, the earth fault loop impedance can be too high to do this, or too high to do it quickly, so an RCD (or formerly ELCB) is usually employed. The provision of a Residual-current device (RCD) or ELCB to ensure safe disconnection makes these installations EEBAD (Earthed Equipotential Bonding and Automatic Disconnection). Many 1950s and earlier earlier TT installations in the UK may lack this important safety feature. Non-EEBAD installations are capable of the whole installation CPC (Circuit Protective Conductor) remaining live for extended periods under fault conditions, which is a real danger. In TN-S and TT systems (and in TN-C-S beyond the point of the split), a residual-current device can be used as an additional protection. In the absence of any insulation fault in the consumer device, the equation IL1+IL2+IL3+IN = 0 holds, and an RCD can disconnect the supply as soon as this sum reaches a threshold (typically 10-500 mA). An insulation fault between either L or N and PE will trigger an RCD with high probability. In IT and TN-C networks, residual current devices are far less likely to detect an insulation fault. In a TN-C system, they would also be very vulnerable to unwanted triggering from contact between earth conductors of circuits on different RCDs or with real ground, thus making their use impracticable. Also, RCDs usually isolate the neutral core. Since it is unsafe to do this in a TN-C system, RCDs on TN-C should be wired to only interrupt the live conductor. In single-ended single-phase systems where the Earth and neutral are combined (TN-C, and the part of TN-C-S systems which uses a combined neutral and earth core), if there is a contact problem in the PEN conductor, then all parts of the earthing system beyond the break will rise to the potential of the L conductor. In an unbalanced multi-phase system, the potential of the earthing system will move towards that of the most loaded live conductor. Therefore, TN-C connections must not go across plug/socket connections or flexible cables, where there is a higher probability of contact problems than with fixed wiring. There is also a risk if a cable is damaged, which can be mitigated by the use of concentric cable construction and/or multiple earth electrodes. Due to the (small) risks of the lost neutral, use of TN-C-S supplies is banned for caravans and boats in the UK, and it is often recommended to make outdoor wiring TT with a separate earth electrode. In IT systems, a single insulation fault is unlikely to cause dangerous currents to flow through a human body in contact with earth, because no low-impedance circuit exists for such a current to flow. However, a first insulation fault can effectively turn an IT system into a TN system, and then a second insulation fault can lead to dangerous body currents. Worse, in a multi-phase system, if one of the live conductors made contact with earth, it would cause the other phase cores to rise to the phase-phase voltage relative to earth rather than the phase-neutral voltage. IT systems also experience larger transient overvoltages than other systems. In TN-C and TN-C-S systems, any connection between the combined neutral-and-earth core and the body of the earth could end up carrying significant current under normal conditions, and could carry even more under a broken neutral situation. Therefore, main equipotential bonding conductors must be sized with this in mind; use of TN-C-S is inadvisable in situations such as petrol stations, where there is a combination of lots of buried metalwork and explosive gases.
Electromagnetic compatibility:-
In TN-S and TT systems, the consumer has a low-noise connection to earth, which does not suffer from the voltage that appears on the N conductor as a result of the return currents and the impedance of that conductor. This is of particular importance with some types of telecommunication and measurement equipment. In TT systems, each consumer has its own high-quality connection with earth, and will not notice any currents that may be caused by other consumers on a shared PE line.
Regulations:-
In residential and commercial installations in the U. S. and Canada, the feed from the distribution transformer uses a combined neutral and grounding conductor (two phase and one neutral, for three wires total), but within the structure separate neutral and protective earth conductors are used (TN-C-S). The neutral must be connected to the earth (ground) conductor only on the supply side of the customer's disconnecting switch. Additional connections of neutral to ground within the customer's wiring are prohibited. For wiring less than 1000 V, the United States National Electrical Code and Canadian Electrical Code forbid the use of systems that combine the grounding conductor and neutral beyond the customer's disconnecting switch. Exemptions are made for certain appliances, such as: electric clothes dryers, and electric stoves. In Argentina, France (TT) and Australia (TN-C-S), the customer must provide their own ground connection. Japan is governed by PSE law.
Application examples:-
Application examples:-
Most modern homes in Europe have a TN-C-S earthing system. The combined neutral and earth occurs between the nearest transformer substation and the service cut out (the fuse before the meter). After this, separate earth and neutral cores are used in all the internal wiring. Older urban and suburban homes in the UK tend to have TN-S supplies, with the earth connection delivered through the lead sheath of the underground lead-and-paper cable. Some older homes, especially those built before the invention of residual-current circuit breakers and wired home area networks, use an in-house TN-C arrangement. This is no longer recommended practice. Laboratory rooms, medical facilities, construction sites, repair workshops, mobile electrical installations, and other environments that are supplied via engine-generators where there is an increased risk of insulation faults, often use an IT earthing arrangement supplied from isolation transformers. To mitigate the two-fault issues with IT systems, the isolation transformers should supply only a small number of loads each and/or should be protected with an insulation monitoring device (generally used only by medical, railway or military IT systems, because of cost). In remote areas, where the cost of an additional PE conductor outweighs the cost of a local earth connection, TT networks are commonly used in some countries, especially in older properties. TT supplies to individual properties are also seen in mostly TN-C-S systems where an individual property is considered unsuitable for TN-C-S supply. In Australia, the TN-C-S system is in use; however, the wiring rules currently state that, in addition, each customer must provide a separate connection to earth via both a water pipe bond (if metallic water pipes enter the consumer's premises) and a dedicated earth electrode. In older installations, it is not uncommon to find only the water pipe bond, and it is allowed to remain as such, but the additional earth electrode must be installed if any upgrade work is done. The protective earth and neutral conductors are combined until the consumer's neutral link (located on the customer's side of the electricity meter's neutral connection) - beyond this point, the protective earth and neutral conductors are separate.
I recently came accross your blog and have been reading along. I thought I would leave my first comment. I dont know what to say except that I have enjoyed reading. Nice blog. I will keep visiting this blog very often.
ReplyDeleteSusan
http://3128proxy.com
"Really informative breakdown of earthing systems! If anyone's looking to get accurate readings, I’d suggest trying the Fluke 1630-2 FC Earth Ground Clamp. It’s super easy to use and perfect for measuring earth ground loop resistance without disconnecting the system."
ReplyDelete"Really fascinating how earthing systems work in electricity! If you're into testing grounding systems, you might want to try using the Fluke 1630-2 FC Earth Ground Clamp. It's super handy for getting accurate measurements without disconnecting the ground, which makes the process so much easier."
ReplyDelete